Population response of midbrain dopaminergic neurons to neuroleptics: further studies on time course and nondopaminergic neuronal influences.

نویسندگان

  • L A Chiodo
  • B S Bunney
چکیده

In the present study, we examined the effects of the cholecystokinin receptor antagonist, proglumide, on the depolarization-induced inactivation of A9 and A10 dopaminergic neurons produced by repeated administration of a classical antipsychotic drug (dopamine receptor antagonist). In addition, we studied the nature of the effects of acute (1-48 hr) and long-term (7 month) treatment with the butyrophenone neuroleptic haloperidol on both the basal firing rate and population response of dopamine-containing neurons in these 2 regions. Acute oral administration of haloperidol (0.5 mg/kg) results, within 1 hr of administration, in an increase in both the firing rate and number of spontaneously active dopamine neurons encountered in both A9 and A10 regions. These effects of a single treatment persist for a minimum of 6 hr and, with respect to firing rate, are not completely normalized for at least 24 hr. In contrast, 7 month continuous treatment with haloperidol reduces the number of spontaneously active DA neurons encountered in both regions in a manner similar to that observed at 21 d. This effect is inferred to be due to the induction of depolarization-induced inactivation of these neurons, since the acute administration of the normally hyperpolarizing, direct-acting dopamine receptor agonist apomorphine (64 micrograms/kg) immediately reverses this reduced number of cells per track to near control levels. This effect appears to be dependent on the continued presence of haloperidol since, when animals treated for 7 months are sampled 14 d after the cessation of drug administration, spontaneous activity is no different from that observed in age-matched controls.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums

Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...

متن کامل

The Response of Ventral Tegmental Area Dopaminergic Neurons to Bupropion: Excitation or Inhibition?

Introduction: Antidepressants can modulate brain monoamines by acting on pre-synaptic and postsynaptic receptors. Autoreceptors can reduce the monoamines effect on the somatodendritic or pre-synaptic regions despite its postsynaptic counter effects. The direct effect of some antidepressants is related to its temporal and spatial bioavailability in the vicinity of these receptors (still a matter...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

Time course of dysregulation of calcium homeostasis in acutely isolated CA1 hippocampal pyramidal neurons after pilocarpine-induced Status Epilepticus

Glutamate induces excitotoxic damage to hippocampal pyramidal neurons in Status Epilepticus (SE) and epilepsy. In this study, we investigated time course of dysregulation of calcium homeostasis at various intervals after an episode of SE in acutely isolated CA1hippocampal pyramidal. For this purpose, male Sprague-Dawley rats (200 g) were subjected to pilocarpine-induced SE. The SE was blocked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 1987